Finite-mass correction to 2D black-hole evaporation rate
نویسندگان
چکیده
منابع مشابه
Quantum black hole evaporation.
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for ...
متن کاملSemiclassical approach to black hole evaporation.
Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulati...
متن کاملAn Introduction to Black Hole Evaporation
Classical black holes are defined by the property that things can go in, but don’t come out. However, Stephen Hawking calculated that black holes actually radiate quantum mechanical particles. The two important ingredients that result in back hole evaporation are (1) the spacetime geometry, in particular the black hole horizon, and (2) the fact that the notion of a “particle” is not an invarian...
متن کاملBlack Hole Evaporation. A Survey
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional mode...
متن کاملBlack Hole Evaporation and Complementarity ∗
About twenty years ago Hawking made the remarkable suggestion that the black hole evaporation process will inevitably lead to a fundamental loss of quantum coherence [1]. The mechanism by which the quantum radiation is emitted appears to be insensitive to the detailed history of the black hole, and thus it seems that most of the initial information is lost for an outside observer. However, dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2012
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.85.124015